

SIDADE TECNOLÓGICA FEDERAL DO

A continuous speed model for roundabouts

Luís Vasconcelos¹, Nicolly Novais Sousa²

ITFT 2024

International Symposium on Intelligent Technology for Future Transportation

Department of Civil Engineering, Polytechnic Institute of Viseu (IPV), Portugal¹ Department of Civil Engineering, Federal University of Technology – Parana (UTFPR), Brazil²

Relevance of this topic

- Speed is considered as the most important variable in roundabout geometric design (FHWA, 2000)
- Different ways to address speeds at roundabouts:
 - UK guidelines geometric check of the fastest path
 - Dutch guidelines correlation of basic design elements

Proposed speed model (cont.)

- **3.** Speed transitions
 - Constant deceleration b
 - Variable acceleration $a = a_{max} \left[1 (v/v_{max})^{\delta}\right]$
 - Deceleration ends at the beginning of the curve, acceleration starts at the end of the curve
- US guidelines calculation of the speed in horizontal curve
- Existing methods have limited applicability (e.g. circular roundabouts) and/or do not provide the full speed profile

Objective

 Develop a simple model to predict speeds on unconventional roundabouts along the full trajectory

Data collection

- Only unrestricted drivers
- Extraction of trajectories from drone videos (ai.datafromsky)
 - Insufficient precision along the full path
 - Limited field of view (max. height 120 m)
 - Useful to identify "typical" trajectories"
 - Shows how incorrect driver behavior is linked to poor

- 4. Implementation
 - Start: x = 0, v = v_{max}
 - Calculate deceleration to every point ahead $b^* = (v_1^2 v_2^2)/2d$
 - If b* < b_{max} maintain v or accelerate to v_{max}, otherwise apply deceleration b
 - Update time, vehicle speed and position (simple cinematic formulas)

roundabout design

- Extraction of trajectories from a single vehicle / driver (GPS datalogger – DL1 club from Race Technology)
 - 9 roundabouts, 27 trajectories (full path)
 - 11 roundabouts, 15 trajectories (min speed and radius)

Calibrated parameters: $a_N = 3.2 \text{ m/s}^2$, $b = 0.91 \text{ m/s}^2$, $a_{max} = 1.02 \text{ m/s}^2$, $\delta = 46$

Sample application

- How effective is a turbo-roundabout to limit speeds at the critical roundabout sections, compared to a two-lane roundabout?
- Assumptions: v_{max} = 50 km/h; calibrated values from sample driver

0.2

0.1

0.15 ⋛

0.05 [–]

Proposed speed model

Adapted from the Portuguese JAE road design guidelines

- Draw the fastest path (minimize curvature, keep 1 m offset to kerb lines)
- 2. Calculate the desired sped of each segment: v_0
 - Straight segments ($r = \infty$): $v_0 = v_{max}$ (observed at a section outside the roundabout influence area)
 - Curved segments: the speed depends on the maximum centripetal acceleration each driver accepts

 $a_N = v^2/r \rightarrow v_0 = \sqrt{a_N \cdot r}$

0.2 Predicted ----- GPS Predicted ----- GPS — Curvature — Curvature 60 (4/u 50 60 0.15 척 (--50 ਮੁੱਤ 40 놀 40 vatur 0.1 රි 30 0 00 30 20 S 10 0.05 ThO ad 20 80 100 120 140 160 180 200 220 240 60 0 20 40 60 80 100 120 140 160 180 200 220 240 Position (m) Position (m)

Future developments

- Improve the deceleration model (smooth transition from v_{max})
- Validate the model with independent data and different drivers
- Implement the model in an easy-to-use spreadsheet.